
Service-
Orientation
A fruit market analogy

When we had just one type of fruit, integration was easy.

bananas

bananas

bananas

It got difficult when we started to add new fruits to the mix.

bananas

bananas

bananasapples

And then we added more new and also exotic fruits.
Things got complicated.

rambutans

pears

After a while, it got expensive and smelly.

The API-economy

And in the meantime companies wanted to integrate all of
eachother’s fruits. The world started to look a bit like a fruit
mayhem.

Smart people found a solution.
They invented a sweet, universal fruit paradigm that allows us to eat
eachother’s fruits faster and better

Centralize services.

Use one central fruitmarket with all the fruit merchants instead of visiting all of the local fruit
stands.

Instead of connecting everything-with-everything (also called point-to-point), we connect
every-thing-to-one-thing and then make new connections with the one thing. This one thing is
also sometimes called middleware, which can be an ESB.

Need
bananas

Need
pears

Need
apples

Have
apples

Have
bananas

Have
pears

The fruitmarket

Consumer-Broke-Provide is the key pattern for working with services.

The fruitmarket is where fruits are exchanged, consumed and supplied.

Think consume-broke-provide. In the middle there’s a tool that will help you as a consuming
application to find your data (through a service) in other, providing, systems.

I need a
banana

I give you
a banana

I’ll connect you to bananas

Through a
special

ripening
processI need very

ripe
bananas

I have very
ripe

bananes

Services should be hiding away internal logic – the systems behind services should be blackboxes.

You don’t need to know how to grow fruit in order to consume it.

Avoid the need to understand what’s inside the other system in order to build stable and
sustainable integrations with that system, by standardizing interfaces.

For a dessert

I need
bananas

I grow
bananas
myself.

Services should be autonomous.

If you provide fruits, make sure you can grow them yourself.

Make sure that the information that you provide as a service is not depending on other systems
outside of your system itself.

I need a
fruit

basket

I give you
bananas

I give you
apples

I give you
straw-
berries

Services should be composable.

If you want to create fruitbaskets, search and combine the different fruits–don’t start
growing the fruits yourself.

Services need to be composable so that smaller services can be combined into larger services
that provide a specific value.

I give you the
fruits to make fruitbaskets

Services should be discoverable.

Label your fruits so people can find them and understand what they are.

Make sure that services can be discovered and that they are meaningful in their function. This
way, re-usability is stimulated and redundancy is lowered.

I need a
banana

Y

N

N

Have bananas?

Have bananas?

Have bananas?
I search bananas

for you

Services should be build for longevity.

If customers know you because of your bananas, make sure you can continue to offer
bananas.

Services should be designed to be long lived. If you call a service today you should be able to call
the same service tomorrow.

I need
bananas

I have
bananas.

First
from
India

Later
from

Equador

Now
from

Brazil

Services should be stateless.

When you sell fruit, keep your stall clean and about fruit – not about your fruit business.

Services should be stateless, that is never storing any state information or transaction through
the service itself.

I need 10
bananas

Here you
have 10
bananes

10
bananes

were given

Get in touch with us.

Digital Innovation

antwerp@digital-innovation.com

http://digital-innovation.com

